Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Plants ; 10(1): 13-24, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38225352

RESUMO

DNA methylation is an essential component of transposable element (TE) silencing, yet the mechanism by which methylation causes transcriptional repression remains poorly understood1-5. Here we study the Arabidopsis thaliana Methyl-CpG Binding Domain (MBD) proteins MBD1, MBD2 and MBD4 and show that MBD2 acts as a TE repressor during male gametogenesis. MBD2 bound chromatin regions containing high levels of CG methylation, and MBD2 was capable of silencing the FWA gene when tethered to its promoter. MBD2 loss caused activation at a small subset of TEs in the vegetative cell of mature pollen without affecting DNA methylation levels, demonstrating that MBD2-mediated silencing acts strictly downstream of DNA methylation. TE activation in mbd2 became more significant in the mbd5 mbd6 and adcp1 mutant backgrounds, suggesting that MBD2 acts redundantly with other silencing pathways to repress TEs. Overall, our study identifies MBD2 as a methyl reader that acts downstream of DNA methylation to silence TEs during male gametogenesis.


Assuntos
Metilação de DNA , Elementos de DNA Transponíveis , Elementos de DNA Transponíveis/genética , Ilhas de CpG , Regiões Promotoras Genéticas , Gametogênese/genética
2.
bioRxiv ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-37214879

RESUMO

Silencing pathways prevent transposable element (TE) proliferation and help to maintain genome integrity through cell division. Silenced genomic regions can be classified as either euchromatic or heterochromatic, and are targeted by genetically separable epigenetic pathways. In plants, the RNA-directed DNA methylation (RdDM) pathway targets mostly euchromatic regions, while CMT DNA methyltransferases are mainly associated with heterochromatin. However, many epigenetic features - including DNA methylation patterning - are largely indistinguishable between these regions, so how the functional separation is maintained is unclear. The linker histone H1 is preferentially localized to heterochromatin and has been proposed to restrict RdDM from encroachment. To test this hypothesis, we followed RdDM genomic localization in an h1 mutant by performing ChIP-seq on the largest subunit, NRPE1, of the central RdDM polymerase, Pol V. Loss of H1 resulted in NRPE1 enrichment predominantly in heterochromatic TEs. Increased NRPE1 binding was associated with increased chromatin accessibility in h1 , suggesting that H1 restricts NRPE1 occupancy by compacting chromatin. However, RdDM occupancy did not impact H1 localization, demonstrating that H1 hierarchically restricts RdDM positioning. H1 mutants experience major symmetric (CG and CHG) DNA methylation gains, and by generating an h1/nrpe1 double mutant, we demonstrate these gains are largely independent of RdDM. However, loss of NRPE1 occupancy from a subset of euchromatic regions in h1 corresponded to loss of methylation in all sequence contexts, while at ectopically bound heterochromatic loci, NRPE1 deposition correlated with increased methylation specifically in the CHH context. Additionally, we found that H1 similarly restricts the occupancy of the methylation reader, SUVH1, and polycomb-mediated H3K27me3. Together, the results support a model whereby H1 helps maintain the exclusivity of heterochromatin by preventing encroachment from other competing pathways.

3.
Sci Adv ; 9(46): eadi9036, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37967186

RESUMO

DNA methylation mediates silencing of transposable elements and genes in part via recruitment of the Arabidopsis MBD5/6 complex, which contains the methyl-CpG binding domain (MBD) proteins MBD5 and MBD6, and the J-domain containing protein SILENZIO (SLN). Here, we characterize two additional complex members: α-crystalline domain (ACD) containing proteins ACD15 and ACD21. We show that they are necessary for gene silencing, bridge SLN to the complex, and promote higher-order multimerization of MBD5/6 complexes within heterochromatin. These complexes are also highly dynamic, with the mobility of MBD5/6 complexes regulated by the activity of SLN. Using a dCas9 system, we demonstrate that tethering the ACDs to an ectopic site outside of heterochromatin can drive a massive accumulation of MBD5/6 complexes into large nuclear bodies. These results demonstrate that ACD15 and ACD21 are critical components of the gene-silencing MBD5/6 complex and act to drive the formation of higher-order, dynamic assemblies at CG methylation (meCG) sites.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ligação a DNA/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Elementos de DNA Transponíveis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
4.
bioRxiv ; 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37662299

RESUMO

DNA methylation mediates silencing of transposable elements and genes in part via recruitment of the Arabidopsis MBD5/6 complex, which contains the methyl-CpG-binding domain (MBD) proteins MBD5 and MBD6, and the J-domain containing protein SILENZIO (SLN). Here we characterize two additional complex members: α-crystalline domain containing proteins ACD15 and ACD21. We show that they are necessary for gene silencing, bridge SLN to the complex, and promote higher order multimerization of MBD5/6 complexes within heterochromatin. These complexes are also highly dynamic, with the mobility of complex components regulated by the activity of SLN. Using a dCas9 system, we demonstrate that tethering the ACDs to an ectopic site outside of heterochromatin can drive massive accumulation of MBD5/6 complexes into large nuclear bodies. These results demonstrate that ACD15 and ACD21 are critical components of gene silencing complexes that act to drive the formation of higher order, dynamic assemblies.

5.
Cell Rep ; 41(8): 111699, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417865

RESUMO

Silencing of transposable elements (TEs) drives the evolution of numerous redundant mechanisms of transcriptional regulation. Arabidopsis MBD5, MBD6, and SILENZIO act as TE repressors downstream of DNA methylation. Here, we show, via single-nucleus RNA-seq of developing male gametophytes, that these repressors are critical for TE silencing in the pollen vegetative cell, a companion cell important for fertilization that undergoes chromatin decompaction. Instead, other silencing mutants (met1, ddm1, mom1, morc) show loss of silencing in all pollen nucleus types and somatic cells. We show that TEs repressed by MBD5/6 gain chromatin accessibility in wild-type vegetative nuclei despite remaining silent, suggesting that loss of DNA compaction makes them sensitive to loss of MBD5/6. Consistently, crossing mbd5/6 to histone 1 mutants, which have decondensed chromatin in leaves, reveals derepression of MBD5/6-dependent TEs in leaves. MBD5/6 and SILENZIO thus act as a silencing system particularly important when chromatin compaction is compromised.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA-Seq , Arabidopsis/genética , Arabidopsis/metabolismo , Pólen/genética , Pólen/metabolismo , Elementos de DNA Transponíveis , Cromatina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
6.
Science ; 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083448

RESUMO

DNA methylation is associated with transcriptional repression of eukaryotic genes and transposons, but the downstream mechanism of gene silencing is largely unknown. Here we describe two Arabidopsis methyl-CpG binding domain proteins, MBD5 and MBD6, that are recruited to chromatin by recognition of CG methylation, and redundantly repress a subset of genes and transposons without affecting DNA methylation levels. These methyl-readers recruit a J-domain protein, SILENZIO, that acts as a transcriptional repressor in loss-of-function and gain-of-function experiments. J-domain proteins often serve as co-chaperones with HSP70s. Indeed, we found that SILENZIO's conserved J-domain motif was required for its interaction with HSP70s and for its silencing function. These results uncover an unprecedented role of a molecular chaperone J-domain protein in gene silencing downstream of DNA methylation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...